Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Mathematics ; 11(4):963.0, 2023.
Article in English | MDPI | ID: covidwho-2243837

ABSTRACT

Human behaviour was tipped as the mainstay in the control of further SARS-CoV-2 (COVID-19) spread, especially after the lifting of restrictions by many countries. Countries in which restrictions were lifted soon after the first wave had subsequent waves of COVID-19 infections. In this study, we develop a deterministic model for COVID-19 that includes dynamic non-pharmaceutical interventions known as social dynamics with the goal of simulating the effects of dynamic social processes. The model steady states are determined and their stabilities analysed. The model has a disease-free equilibrium point that is locally asymptotically stable if R0<1. The model exhibits a backward bifurcation, implying that reducing the reproduction number below one is not sufficient for the elimination of the disease. To ascertain the range of parameters that affect social dynamics, numerical simulations are conducted. The only wave in South Africa in which interventions were purely based on human behavior was the first wave. The model is thus fitted to COVID-19 data on the first wave in South Africa, and the findings given in this research have implications for the trajectory of the pandemic in the presence of evolving societal processes. The model presented has the potential to impact how social processes can be modelled in other infectious disease models.

2.
Infect Dis Model ; 7(2): 179-188, 2022 Jun.
Article in English | MEDLINE | ID: covidwho-1867201

ABSTRACT

COVID-19, a coronavirus disease 2019, is an ongoing pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The first case in Kenya was identified on March 13, 2020, with the pandemic increasing to about 237,000 confirmed cases and 4,746 deaths by August 2021. We developed an SEIR model forecasting the COVID-19 pandemic in Kenya using an Autoregressive Integrated moving averages (ARIMA) model. The average time difference between the peaks of wave 1 to wave 4 was observed to be about 130 days. The 4th wave was observed to have had the least number of daily cases at the peak. According to the forecasts made for the next 60 days, the pandemic is expected to continue for a while. The 4th wave peaked on August 26, 2021 (498th day). By October 26, 2021 (60th day), the average number of daily infections will be 454 new cases and 40 severe cases, which would require hospitalization, and 16 critically ill cases requiring intensive care unit services. The findings of this study are key in developing informed mitigation strategies to ensure that the pandemic is contained and inform the preparedness of policymakers and health care workers.

3.
Infect Dis Model ; 6: 370-380, 2021.
Article in English | MEDLINE | ID: covidwho-1051670

ABSTRACT

The coronavirus disease 2019 (COVID-19) pandemic reached Kenya in March 2020 with the initial cases reported in the capital city Nairobi and in the coastal area Mombasa. As reported by the World Health Organization, the outbreak of COVID-19 has spread across the world, killed many, collapsed economies and changed the way people live since it was first reported in Wuhan, China, in the end of 2019. As at the end of December 2020, it had led to over 2.8 million confirmed cases in Africa with over 67 thousand deaths. The trend poses a huge threat to global public health. Understanding the early transmission dynamics of the infection and evaluating the effectiveness of control measures is crucial for assessing the potential for sustained transmission to occur in new areas. We employed a SEIHCRD mathematical transmission model with reported Kenyan data on cases of COVID-19 to estimate how transmission varies over time. The model is concise in structure, and successfully captures the course of the COVID-19 outbreak, and thus sheds light on understanding the trends of the outbreak. The next generation matrix approach was adopted to calculate the basic reproduction number (R 0) from the model to assess the factors driving the infection. The model illustrates the effect of mass testing on COVID-19 as well as individual self initiated behavioral change. The results have significant impact on the management of COVID-19 and implementation of prevention policies. The results from the model analysis shows that aggressive and effective mass testing as well as individual self initiated behaviour change play a big role in getting rid of the COVID-19 epidemic otherwise the rate of infection will continue to increase despite the increased rate of recovery.

4.
BMC Res Notes ; 13(1): 352, 2020 Jul 23.
Article in English | MEDLINE | ID: covidwho-671179

ABSTRACT

OBJECTIVE: Coronavirus disease 2019 (COVID-19) is a pandemic respiratory illness spreading from person-to-person caused by a novel coronavirus and poses a serious public health risk. The goal of this study was to apply a modified susceptible-exposed-infectious-recovered (SEIR) compartmental mathematical model for prediction of COVID-19 epidemic dynamics incorporating pathogen in the environment and interventions. The next generation matrix approach was used to determine the basic reproduction number [Formula: see text]. The model equations are solved numerically using fourth and fifth order Runge-Kutta methods. RESULTS: We found an [Formula: see text] of 2.03, implying that the pandemic will persist in the human population in the absence of strong control measures. Results after simulating various scenarios indicate that disregarding social distancing and hygiene measures can have devastating effects on the human population. The model shows that quarantine of contacts and isolation of cases can help halt the spread on novel coronavirus.


Subject(s)
Betacoronavirus , Coronavirus Infections/transmission , Environmental Exposure , Guideline Adherence , Infection Control/methods , Models, Theoretical , Pandemics , Pneumonia, Viral/transmission , COVID-19 , Contact Tracing , Convalescence , Coronavirus Infections/epidemiology , Coronavirus Infections/prevention & control , Disease Susceptibility , Forecasting , Hand Hygiene , Humans , Infection Control/statistics & numerical data , Masks , Pandemics/prevention & control , Patient Compliance , Patient Isolation , Pneumonia, Viral/epidemiology , Pneumonia, Viral/prevention & control , Quarantine , SARS-CoV-2 , Time Factors , Travel
SELECTION OF CITATIONS
SEARCH DETAIL